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The conditions for the existence of preeessions in a system consisting of two symmetric rigid bodies in a gravitational field are 
derived, on the assumption that one of the bodies is rotating uniformly about the vertical and the other is preeessing about the 
vertical. Regular precession of asymmetric bodies linked by a spherical hinge is considered. 

A great many classes of precessional motions, in various fields of force, have been determined in the 
dynamics of a single rigid body.$ In the classical problem, the characteristic properties that mark a motion 
as precessional are conditions imposed on the mass distribution, such as the Lagrange, Hess and Grioli 
conditions, and the requirement that the barycentric axis of the body should make a fixed angle with 
the axis of precession. In the case of more general fields of force, these properties may fail to hold.$ 
In the problem of the motion of a system of coupled rigid bodies in a gravitational field, conditions 
have been derived for the existence of regular precessions of Lagrange gyroscopes [1] and semi-regular 
precessions of Hess gyroscopes [2], and certain properties of precessional motions of systems of two 
coupled rigid bodies in a gravitational field have been established in the case when one of the bodies 
is a Lagrange or Hess gyroscope and the other is a Grioli gyroscope [3]. 

All the studies cited are based on conditions of a specific mass distribution in the system. 
The present paper will discuss precessions of a system of two rigid bodies in a gravitational field without 

any prior assumptions as to the mass distribution of the bodies. Special attention will be devoted to 
cases in which one of the bodies is rotating uniformly about the vertical. It is obvious that if a body $2 
is suspended in a body $1 at its centre of mass, it will rotate as a free rigid body. In that case the dynamics 
of the precessions of S1 is the same as in the classical case. This special case will not be considered 
here. 

The studies presented here of the dynamics of precessions in a system of two heavy non-symmetric 
rigid bodies complement results previously obtained for precession with prescribed mass distributions 
[1-3] and show that some of the properties established are analogous to those known to exist in the 
classical problem. However, along with facts typical for the classical case, we also obtain new facts; this 
is particularly true in regard to uniform motions in the system of two heavy bodies considered here. 

1. F O R M U L A T I O N  OF THE P R O B L E M  

Consider the motion of a system of two rigid bodies S 1 and S 2 with the following characteristics: O 1 
is a fixed point of $1; the letter O will denote a general point of either $1 or $2, at which there is an 
ideal spherical hinge; C1 and C2 denote the mass centres ofS 1 and $2, and ml and m2 denote their masses. 
Then the equation of motion of the system consisting of $1 and $2 in a gravitational field, assuming 
that there is no friction at O1 and 02, are as follows [1]: 

A,~o, +to, xA, to, +d<to2L a t  at x e 2 ) - g v ]  - m ' g e '  x v  =0  (1.1) 

A 2 ~02+ to 2 ×A2to 2 +m2e 2 ×(dv 0 / d t - g v ) = O  (1.2) 

v =vx i, "v =VX z (1.3) 
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For these formulae we have introduced the following notation: 0~1 and ¢02 are the absolute angular 
velocity vectors of St and $2, 17 is a unit vector indicating the direction of  the force of gravity, Vo is the 
velocity of  the point 0,  • 1 = O l C l ,  e 2 = OC 2, s = O10,A1 andA2 are the inertia tensors of $1 and $2, 
which are constant at the points O1 and O,g is the acceleration due to gravity, and a dot and an asterisk 
over a variable denotes relative derivatives in bases il, i2, i3 and ~1, 39, ~3 rigidly attached to the bodies 
$1 and $2. The following relations are obvious 

ds d v °  =1~1 X S + t O l  X( tOI  X S )  
Vo = d t  = t°l x s, dt 

d o  I d e  2 
--O~ I x e  I , = o ~ × e  2 

dt dt 

(1.4) 

Equations (1.1)-(1.3) admit of first integrals 

17. [A I oa h + A2to 2 + m 2 (e 2 + s) × v 0 + m2s x (¢o 2 × e 2)] = k 

(Aio h • o~ I ) + (A2¢o 2 • ¢02 ) + m2~J 2 + 2m2v 0 • (to 2 × • 2 ) - 

-2mtg(e I . t , ) - 2 m 2 g ( s + e 2 ) . v  = 2E, 17 .v  - 1 (1.5) 

, Let 

3 3 3 
to, = ~, p}t)ij, to 2 = Y, p~t2)~t, 17 = ~ V~')in (1.6) 

j=l k=l n=l 

3 3 
*i = y .  ~ # i j ,  i t = ~, ~tn~n, ( i =  1,2,3; l =  1 ,2 ,3)  (1 .7)  

j=l n=l 

where the product  of the matrices (oqj), (13tn) is obviously equal to the identity matrix. Let  O 1 ~  
denote  a fixed frame of  reference whose unit vectors are 1, j ,  k = v. The positions of the bases of  $1 
and $2 relative to Ol~q~ are determined by the Euler  angles 01, 91, 1]/1 and 02, 92, ¥2 and the matrices 
(y~l)), (y~2)), respectively, where 01 ---- /_.(17, i3)  , 0 2 ---- / ( 1 7 ,  ~3), the position of  the basis of  $2 relative to 
Sl"is det6rmined by the angles 0, 9, ~, where 0 = / - 0 3  33). Then 

where 

¥I~ ) = cos9i cos~ i  - cosOi sin.9i sin ¥ i  

y~J = cos 9i sin ~i  + c o s  0 i sin 9i cos ¥ i ,  

y~i~ = _ sin 9i cos ¥ i  - cos 0 i sin ¥ i  cos 9i 

y(i) - sin q~i sin ¥ i  + cos 0 i cos 9i cos ¥ i ,  22 = 

y~3it ) = sin 0 i sin Wi, r32" (i) = _ sin 0 i cos Wi, 

yl~ ) = sin 9 i  sin 0 i 

y~) = cosgl sin0 i 

y(3~ ) =cosOi, i =  1,2 

(1.8) 

cql = c o s 9 c o s ~ - c o s 0 s i n ' g s i n ~ ,  al2 = c o s g s i n ~ + c o s 0 c o s v s i n 9  

at3 =s in9s in0 ,  a2t = - s i n 9 c o s v - c o s 0 c o s g s i n ~  

a22 = - s i n 9 s i n ~ + c o s 0 c o s 9 c o s ¥ ,  a23 =cosgsin '0  

ct31 = s i n 0 s i n ~ ,  ot32 = - s i n 0 c o s ~ ,  a33 =cos0  

(1.9) 

For the absolute angular velocities cot and to2 we have 

p~i) = ~ i  sin 0 i sin 9i + 0i cos 9i, P(2 i) = flti sin 0 i cos 9i - 0 i  sin 9i 

p~i)=, icosOi+(pi  , (i = 1,2) 

(1.10) 
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Let to. be the angular velocity of $2 relative to $I. Then 

to2 = tol + to. (1.11) 

where 

to. = (~s inOsing+6cosg)a l  +(~sinOcostp-Osinto)a 2 +(~cosO+ (o)a 3 (1.12) 

Using (1.6)--(1.12), we can write system (1.1) and (1.2) in terms of the variables 01, ~1, ¥1 and 0, 
9, ¥- However, this yields a rather cumbersome system of differential equations, not very suitable 
for investigating the special class of precessions. In this paper, therefore, we shah adopt another 
approach, based in the first instance on a basic property of precessional motions. After deriving 
the conditions for such motions to exist under our assumptions, we shall then indicate the positions 
of the bases of $1, $2 relative to O1~rl~ and relative to one another, relying on the aforementioned 
kinematic characteristics. 

2. P R E C E S S I O N A L  MOTIONS 

Suppose that each of S 1 and $2 is precessing. This means that one can find in $1 and $2 fixed unit 
vectors al and a2, and in the space OI~TI~ unit vectors 3"1 and 3"2, such that the angles between al and 
3"1 and a2 and 3"2, respectively, remain constant throughout the time of motion. This property may be 
written as follows: 

al  "3'1 = a~ t),  a2 "3"2 = a~02), ~/1 = Vl x to I, 3"2 = ~/2 x to 2 ( 2 . 1 )  

We then obtain from (2.1) 

to1 = ul(t)al +xh(t)3'l, to2 =u2( t ) a2  +~)2(t)3"2 (2.2) 

If ul(t) and ~l(t) do not depend on time, the precession of $1 is said to be regular. When one of these 
functions is constant, the precession is said to be semi-regular. If neither ul(t) nor ~l(t) is a constant, 
we have the most general kind of precession. The definitions of precession for $2 are analogous. In 
addition, if 3'1 = v, we shah call the motion a precession of $1 about the vertical; otherwise it will be a 
precession of $1 about an inclined axis. A detailed survey of the results obtained for precession in the 
dynamics of a single rigid body may be found in the preprint cited above. We will merely note that in 
the classical case--the motion of a body in a field of gravity--the possible cases are regular precession 
of a La.grange gyroscope, semi-regular precession of a Hess gyroscope about the vertical, and regular 
precession of a (;doff gyroscope about an inclined axis. One of the characteristic properties is that the 
vector ai points along the barycentric axis. In systems dynamics this property is also typical of many 
precessions; we shah therefore confine our attention to precessions of this type only. 

Suppose that $1 is precessing and let r t  be the angle between the vectors v and 3"1. We shah assume 
that i3 = al and that 01 is the angle between the vectors 3"1 and i 3. Then it is obvious that a(00 = cos 01 
and 01 = 0(01), where 0 (1) is a constant. Substituting to1 = ul(t)i3 + ~1(t)3"i into the equation 
for the derivatives of v and 3"1 from (1.3) and (2.1), we obtain 

"~l =ul(t)(~ft xis)' v =u1(t)(v xi3)+~l(t)(v x~ h) (2.3) 

Noting that v and 3'1 are unit vectors and stipulating that ¥1 is the angle of precession with the axis of 
precession along the vector 3"1, we obtain the following representations for the vectors v and 3'1 from 
(2.3) 

3'1 = a(oll ) sin 91i, + a~ ) cosg, i2 + a~ol)i3 (2.4) 

v = (c o +b6a~ 1) sinai )~/] -b6 sin ~li 3 - b~(3'] x i3)cos ¥1 (2.5) 

where qh is the angle of rotation of the body about an axis along the vector i3, l a ~  = sin 0~01), Co = cos 
K1, bo = sin ~q/sin 0(01). In this situation ul(t) = th, . l( t)  = ~1, i.e. it follows from (2.2) that 
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tel = ~ la l  + V13'l (2.6) 

This approach enables us to express the vectors ~q, v, tel explicitly in terms of the corresponding 
variables and to consider only the dynamic equations of  motion of Sv The same holds for the dynamics 
of  precessions of  $2. Note that the variable ¥1 introduced here differs from the corresponding variable 
of  Section 2 only in the case of precessions about an inclined axis. We have therefore used the same 
notation ¥1 in order to avoid introducing new symbols. 

In this paper we are concerned with precessions of  a system of two coupled bodies $1 and $2 on the 
assumption that both $1 and $2 precess about the vertical, i.e. ~/1 = ~/2 = v. In addition, as already 
remarked, we shall assume that the vectors 31 and 32 point along the barycentric axes of $1 and $2 and 
the mass centre of  $1 is sithated on the line-segment [O10]. Let s = si3, e I - -  e l i3 ,  e2 = e2~3 in E q s  (1.1) 
and (1.2). Then, by (1.4), (2.2) and the assumptions just made, it follows from (1.1) and (1.2) that 

Al~l  + tel × Altel + i3 X [P2 (~1)< i3 + tel ( tel"  i3 ) - i30)~ ) + 

+PI (~2 x 33 + te2 (te2 "33)-  c°2233)- ~ v ] -  Fl(i 3 x v)  = 0 

A 2 ~02+ te2 x A2te2 +33 x [Pl(¢OI xi3  + t e l ( t e l  "i3)-¢°2i3)-F2 v ] = 0  

~ ----V XtOi, lP ---- V XOJ 2 

(2.7) 

(2.8) 

(2.9) 

The integrals (1.5) are 

v . [Al te  I+A2te 2+(PI33+P2i3)×( te l× i3 )+Pl i3×( te2Xa3) ]=k ,  v . v = l  
(2.10) 

(Alto! "tel )+ (A2te2' te2) + P2 (tel × i3) 2 x 2Pi (te I x i3). (te2 ×33) - 

-2Fi 03" v)  - 2(Fai 3 + F233 ). v = 2E 

In all these formulae we have used the notation P1 = m2e2s, P2 = m 2  s2, 1"1 = mle lg ,  F2 = mze2g,  

F 3 = m2sg. 
Let us assume that $1 and $2 are precessing about the vertical, under the above restrictions. We then 

derive from (2.1) and (2.2) 

i3 v--a o ", 33 v=a 02) 
tel = ul (t)i3 + Dl( t )  v ,  te2 = u2(t)a3 + u2(t)v (2.11) 

Inserting tel and te2 into (2.7) and (2.8), we obtain 

/~1 (t)Ali3 + ~)! ( t)AlV + Ul (t)l-~l ( t ) [ t r (Al)(v × i 3 ) - 2 ( A I r  x i 3 )] + 

+fi2(t)(i3 X All3) + ~12 ( t ) (v  x AlV)+ i 3 x [P21)l (t)(ly × i3) + Pi1)2 ( /)(P × 3 3 ) +  

+(P2~2(t)ato 1) + P~x)2 (t)a~o2) - F 3 )v - P~,02 (t)~ 3 ] -  F~ 03 x v)  = 0 (2.12) 

/12 (t)A2a3 + ~)2 (t)A2v + u2 (01)2 ( t)[ tr(A2)(v x 3 3 ) -  2(AEV x 33)] + 

+u2(t)(33 x A 2 3 3 ) + 9 2 ( t ) ( v  x A2v)+3 3 x [PI~I (t)(v x i3 )+  

+PIx) 2 (t)a~o I) - F 2)v - PIx) 2 (t)i 3 ] = 0 (2.13) 

i, = u l ( t ) ( v  x i3), ~, = u2(t)(  v xa3) (2.14) 

were tr (Ai) are the traces of the matricesA1 a n d A 2 : A 1  = (Aij) ,A2 = (Bij). 
For the absolute derivatives of the vectors i3 and 33 we have, as in the case of (1.4) 

di3 d33 (2.15) 
d--t = ~ l ( t ) ( v  x i3), dt = ~2 (t)(v xa3) 

To investigate the conditions for precessions of  a system of two coupled bodies $1 and S 2 to exist, 
one has to consider special cases in which one of the bodies is spinning uniformly [3], These cases are 
also of  interest in themselves. 
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3. T H E  F I R S T  T Y P E  OF M O T I O N  OF T H E  S Y S T E M  

Suppose that $1 is precessing regularly and that $2 is spinning uniformly about the barycentric axis 
directed along the vertical. Then by (2.11) 

i 3 • p = a(o I), 0.(02) = 1, ¢01 = r/oi3 + moP ,  ¢0 2 = m ~ 3  (3.1) 

that is, ul(t)  = no, ~l(t)  = too, u2(t) = m~, ~2(t) = 0. Substituting these values into (2.12), (2.13) and 
the first equation of  (2.14), we get 

nomo [ t r (A I )(~, x 13) - 2 ( A i v  × i 3 ) ] +  n02(i3 × All 3 ) +  m 2 ( p  × All7 ) + 

+(P2m02a0 (I) - 1" 3 - l" I )(i 3 X p )  = 0 (3 .2)  

m~2 (:~3 × A2~ 3 ) - pim2 (~3 × i3) = 0, (3 .3)  

V ---- n 0 ( P  × i 3 ) (3.4) 

Equation (3.4) yields a representation for 1, 

t, = a~ll ) sin qhil + a~ll ) COS ¢pli 2 + a(01)i3 (3.5) 

where a01(1) = ~/(1 - a00)2), q~l ----- not + ¢p~0). Let i 3 ---- ~1~1 + ~2~2 + ~333 (see (1.7)). Then, taking into 
account thatA2 = (B#), we deduce from Eq. (3.3) that 

e l m ~ 3 2  - m~2B23 = 0, ~m2[~31 m'2B - o 13 = 0  ( 3 . 6 )  

Hence it follows that [~31 a n d  ~32 are constants, and since 1521 + ~ 2  + ~23 = 1, ~3 is also a constant. 
Hence the vector i3 is fixed in the basis of $2. Using the first equation of  (2.15) and the fact that 13sl, 
~32, [~33 are constants, it can be shown that m6 = mo, and it then follows from (3.6) that 

[ ~ 3 1 = B I 3 / P I ,  ~ 3 2 - - B 2 3 / P I ,  ~J33 =cosOI°) =(I-(B?3 + B23)/ PI2] ~ 

Substituting (3.5) into Eq. (3.2) and noting that the resulting equation must be an identity in t, we obtain 
the conditions 

A12=AIs=A23=O, All = A 2 2  

(3.7) 
mon0A33 +m~a~l) (A33 2 (I) - A l l ) - P 2 m o a o  +F3 +Fi = 0  

These formulae show that $1 is a Lagrange gyroscope. Let 

1~3, _ ~C') - a~o', ) s i n  ¢t o ,  = a¢o '}, --~01 COS 0~0' ~32 ~33 
B23 BI3 

sintxo = on(I) ' ¢°StXo = D.(I) 
~ It,Ol • lV'0l 

Then the conditions on the parameters of the body may be written as 

B?3 2 

The position of $2 relative to S1 is given by the first formula of  (1.7), with 

0 h ~ = -ao °) cos ~0 sin 9~ - sin 0% cos ~ 

~ 2  = -ao (1) cosao cos tp~ + sin ~0 sin ~0~ 

CXl3 = a{o I) cos ~0, ~21 = -ao {I) sin ~0 sin tpl + cos 0% cos ~ol 

¢x22 = -a~o i) sin ¢x o cos ~Pm - cos ct o sin ~0j, ¢x23 = a<o I) sin tx o 

~31---- d(I)01 s i n  9 1 ,  0~32 ----" a(ll ) cosq)l ,  0~33 = a0 (1) 

For the first type of  motion the solution of Eqs (1.1)--(1.3) is 

(3.s) 
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O~ 1 = noi  3 + mot , ,  ¢0 2 = mo~ 3 

( I ) s in lP l i l  +a(o~)cosq~li2 +a(ol)i3, tp I = n o t + t p l  O) V = a01 

The position of $1 relative to the fixed system of coordinates Ol~rl~ is defined by the matrix 
(-/~])), whose components are given by formulae (1.8) with i = 1 and 01 = 0~ °), qh = not + q~o), 
¥ 1  = mot + ¥~o). 

If one assumes that $2 is also a Lagrange gyroscope, it follows from (3.8) that it must be suspended 
from SI at its centre of mass. Consequently, in the general case $2 cannot be symmetric about its axis 
of spin. Thus, it is characteristic for the first type of motion that $1 is a Lagrange gyroscope but $2 is 
not, and its axis of spin cannot be a principal axis of $2. 

4. T H E  S E C O N D  T Y P E  OF M O T I O N  OF THE SYSTEM 

Suppose that $1 is precessing regularly and that $2 is spinning uniformly about a non-barycentric axis 
directed along the vertical 

i3 .v=a(0 I), a(o2)=1, tol=noi3+mov, to2=m~b (4.1) 

where b ;~ ~3, b = v. Then the equation of motion of $2, by (2.13), is 

m~ 2 ( b  x a 2 b  ) + 3  3 x [(Pim02a(o ') - F 2 ) v  - Pim02i3 ] = 0 (4.2) 

Let us provide $2 with an intermediate basis ~ ,  ~ ,  ~ = b such that ~3 = -/1~ + -/33~'. Define 

i3 = [~13~ + [~23~ + [3~33~ (4.3) 

By (4.3), it follows from Eq. (4.2) that 

Pa3m  ;2 - m;2 3 -- 0, -/ ,a;2 = 0 
(4.4) 

m~2B13 - -/I (plm2a(o ') - F2 - Plm~33) - Pl-/3m2~3, = 0 

Since "ll ~ 0, it follows that [i~2 = 0, B~3 = 0. In addition, it follows from (2.15), when conditions (4.1)- 
(4.4) are satisfied, that m 0 = m o, 1~3 = a(01), [i~1 = a (1). Let -/1 = cos ct~, -/3 = sin tx~. Then by (4.4) 

2 * * (4.5) m0Bi3 + F2 cosct0 ~_2~0) =0  - rl,,,0u 0 sinct 0 

If the axis of spin is a principal axis of $2, it follows from (4.5) that tg ¢t~ = F~JPlm~a(o 1). When conditions 
(3.5), (4.1)-(4.4) are satisfied, Eq. (2.12) yields the first two conditions of (3.7). 

Thus, in the second type of motion $1 is again a Lagrange gyroscope. The difference between this 
and the first type is that $2 may spin uniformly about a principal axis in $2 at O, which, however, cannot 
be a barycentric axis. The position of the bases of $1 and $2 is easily determined from the relationships 
indicated in Sections 3 and 4. 

5. THE T H I R D  T Y P E  OF M O T I O N  OF THE SYSTEM 

Suppose that $1 is spinning uniformly about the vertical and that S 2 is precessing regularly 

tol =mov, i3.v=a~ol), a3.v=d02), to2=n~a3 +m~v (5.1) 

The vector v is fixed in $1. Denote it by al. We may assume that ai is not the vector i3. We provide $1 
with a basis i~, i~, i~ = ab setting 

i3 = 531i; + 533i~, 33 = 031i; + 032i [ + 033i3 (5.2) 

Analysis of Eq. (2.12) under assumptions (5.1) and (5.2) yields the conditions 

~31032 = 0,  PIO32~33 - A23 = 0 
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* 2 Ai3m 0 - 531 (P2m02833 + Plm~2a(o 2) - ~ - FI )  + Pimp2 (831(:~33 - 833(I31 ) -- 0 (5.3) 

If 531 = 0, i.e. $1 is spinning uniformly about a barycentric axis, then 533 = 1 and by (5.3) 

P1032 = A I 3 ,  PIO31 =A23 (5.4) 

It has been taken into account here that m~) = m0. This condition follows from the equation 

da 3 / d t  = m~(v xa  3 ) 

taking into account the fact that the 6~ in (5.4) are constants. It follows from (5.4) that if the barycentric 
axis of $1 is a principal axis, then $2 is also spinning uniformly. This means that a necessary condition 
for the existence of a precession of $2 is that the barycentric axis should not be a principal axis of $1. 

If531 ~ 0 in (5.3), then (~32 = 0 ,A~3 = 0. Then one can set (~33 = a(2), (~31 ----- a(02), and we obtain from 
(5.3) 

* 2 2 (2) 
Ai3m 0 - mo2p2831833 + FI831 - Plrno~33a 0 = 0 (5.5)  

Examination of Eq. (2.13) yields the conditions 

B12 = B I 3  =B23 = 0 ,  BII  =B22 (5.6) 
(2) , l~ ~,~(2),~(2)~2 ~(2)2f~2DX _ F 2 )  + 

B33a01 n o m o - ( B l l - " 3 3 : t ' 0  t'Ol m o - ~ 0 1  ~'"0'1v33 
2 (2) 

+Pim0[(~33 - a  0 (831(~31 +833(~33)] = 0 (5.7) 

Thus, it follows from (5.6) that $2 is a Lagrange gyroscope. The conditions for this type of motion 
to exist have the form (5.5) and (5.7). The solution for the third type is 

(01 = mov, (02 = n~a 3 + mo v 

_ .~2) sin (p251 + ,,(2) cos (P252 + a(02):)3, (P2 = n;t + (p(2 °) I ~  - -  " 0 1  t401 

6. T H E  F O U R T H  T Y P E  OF M O T I O N  OF T H E  SYSTEM 

Suppose that $1 is performing semi-regular precession of the first type about the vertical, while $2 is 
spinning uniformly about b = v. We must set 

(01 = Ul (/)i3 + m0v,  (02 = m~v (6.1) 

in (2.11). When this is done, Eq. (2.13) yields (4.2) and the analysis follows the same lines as in 
Section 4. Noting that, as is obvious, m~) = m0 in (6.1), we deduce from Eq. (2.12) that 

ul (t)Ali3 + u] (t)m o [tr(A 1 )(v x i 3 ) - 2(A 1 v × i 3 )] + u 2 (t)(i 3 x A li 3 ) + 

+m2(v  x Air)  + (i 3 x v)(p2m~a(o 1) _ F3 _ Fi )+ Pimoa02 (2) (13 X V) _ .  p]m2 (ia. ×an). =0  (6.2) 

We obtain an expansion (3.5) for the vector v, where Ul = ~1. It follows from the arguments of Section 
4 that in this case v -  03 x i3) = 0. 

Let us calculate the scalar product of the left-hand side of (6.2) and the vectors i3 and v, respectively 

/~1 (Ali3" i3)+ m2i3 "(v x Air ) = 0 

/Pl (Ali3" v)  - 2~01m0v. (Alp x i 3 ) + (p~v-(i 3 x Ali 3 ) = 0 

The first equation of (6.3) in scalar form yields 

.,~(1)~2 
~0~ (t) = "01 '"0 [a 0 )(Az2 - All ) cos 2(pl + 2a(Ji)al2 sin 2(p, + 

2A33 

+4A23a(0 I) cos (pl + 4Ai3a(0 I) sin (Pl + c. ] 

(6.3) 

(6.4) 
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where c. is an arbitrary constant. 
Substituting (6.4) into the second equation of (6.3) we obtain the following conditions on the 

parameters 

AI2 = A23 = 0,  A23 = A33(AII - A22) (6.5) 

and the relation 

m0 (1) • A33a~01)) (6.6) ~o I =-~----33 (Al3a01 slnq~l + 

Examining the projection of  the left-hand side of Eq. (6.2) onto the vector i 3 x t,, we obtain the 
condition 

A .(t)~0)2mo 2 . . t . . ( ! )2 tD _ 2 . 0 )  _ F  3 -- - ~ _ 2  0 )2 . (2 )  
22t'0l t~ 0 T~0I  ~,J2,,~0~0 - - [ l ) + / ~ l - ~ 0 a 0 1  t* 0 -- 

-Plm 2 [a(o 2) - ao(!)(i3.3 3 )] : 0 (6.7) 

Formulae (6.5)-(6.7) imply that this motion of  a coupled system of two bodies $1 and $2 is possible 
only if $1 if a Hess gyroscope, (Pl is determined by (6.6), the properties of the uniform motion of $2 
are analogous to those given in Section 6, and the parameters of $1 and $2 satisfy condition (6.7). 
This result for $1 is similar to the result for the classical problem of a single rigid body with a fixed 
point. 

7 .  T H E  D Y N A M I C  I M P O S S I B I L I T Y  O F  S E M I - R E G U L A R  P R E C E S S I O N  
OF T H E  S E C O N D  T Y P E  

By virtue of the analogy established in Section 6 with the classical problem of a single rigid body, it 
is interesting to investigate semi-regular motions of  the second type. Thus, let $1 perform a semi-regular 
precession of the second type and S 2 spin uniformly about the vertical 

¢ o l = n 0 i 3 + D ( t ) v ,  ¢ o 2 = m ~ b ,  i3.v=a(01), b = v  (7.1) 

Equation (2.13) becomes 

m~ 2 (b x A2b ) +a  3 x [Pl~! (t)(b x i 3 ) + PI ~)~ (t)a(J) - F2 )b - P I~  (t)i 3 = 0 (7.2) 

We introduce a basis ~1", ~2", ~3" = b in $2 so that 

3 3 = sintz0a ~ +cosct0a ;, i 3 = a(oll)sinu3~ + a(011 ) cosu3~ +a(01)33 (7.3) 

where u is an auxiliary variable. Let us consider the kinematics of this motion. Obviously 

di3 = ~)!(t)(v x i 3), d31 , , d32 ' * (7.4) = m032, = -m03 ! 
dt dt dt 

Substituting (7.3) into the first equation of (7.4), we have 

~)! (t) = m~ - fi (7.5) 

Equation (7.2) in scalar notation gives the equalities 

sin ¢Xo(~ ! ( t ) s i n  u - ~12 cosu) = 0 

,2--* Pja(o!) COStXo(~)!(t)sinu x)2(t)cosu)=O (7.6) mo /ff23 + 

,2 ~* _ plaCo ! ) cos ~x 0 (~)! cos u - ~2 sin u) + F 2 sin ¢x 0 = 0 m0 ~!3 

If sin ob = 0 in (7.6), it follows from these relations that 
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p 2  * • * m o (Bi3 s m u +  B.j3 c o s u ) -  Plao(t|)~t (t) = 0 
(7.7) 

m;2(B~3 sin u -  B;3 cosu) +/~a(0l,)o| ( ,)  = 0 

W h e n  u = const, it follows f rom (7.3) that  1)2( 0 = re'o, i.e. the precession of  $1 cannot  be semi-regular. 
Differentiat ing the first relationship of  (7.7) along the trajectories of  the second, we obtain 

(B~3 c o s u  + B~3 sin u ) ( u  - 21) I ( t ) )  = 0 

The case B~3 = B ~  = 0 is impossible because of  (7.7). Therefore u = 21)1(t) and it follows f rom (7.5) 
that  only regular precession of  $1 is possible. Thus, in system (7.6) sin a0 ~ 0 B ~  = 0 and 

%| (t)sin u - 1)2 ( t )  c o s  u = 0 ,  1) 2 ( t )  -- ~ 0  s in  u ( 7 . 8 )  

where 

= ( '2B* pla(oll ) cos~ o Ko mo 13 + F2 s in~o)  / (7.9) 

Le t  us assume that  cos ct ~ 0. In that  case it follows f rom the two equations of  (7.8) (with the second 
writ ten as 2ul(t)61(t) = roticos u) and f rom Eq. (7.5) that  u = 2/3m'o, i.e. u is a constant. Thus, we must  
assume in (7.6) that  cos txo = 0, and so system (7.6) yields equalities 

B~3=0 , BI*3 = - F2 ~l( t ) s inu-~2( t )cosu=O 
m~'  

Under  these conditions, because of  (3.5), the integrals (2.10) become 

v 2 (t)(a 2 sin 291 + a~ cos 291 + 2al sin 91 + 2a~ cos tp) + a o ) + 

+2~| (t)[Pim~a(o|l) sin u + n o (b| sin 9 |  + bf cos tp I + b o)] = 2 E* 

1)1 (/)[(a2 sin 2~0j +a~ cos29 |  + a  I sin (p| +a~ cos(pl + a o ) +  

+Pza(o', ) sin u] + P) m~a~|l ) sin u + n o (b I sin tp, + b{ cos 9, + bo ) = k* 

where E*, k* are new constants and 

• . 0) 2 

a 2 = Al2ao(~ )2, a ;  = ~(A22 -Ail)ao| , a I = A,34')a~ll ) 

a~ " _(I)_(1) * =A33a(01) 2 +1/62(Ai ' +A22)a(011 )2 =..s23u 0 u01 . a 0 

• _ _  o 2 ~ ( 1 )  2 - -  ( I )  
a o = a o + " ' 2 o  UOl , b l=" t l3a0t ,  b;=a23a(otl ), b o=a33a(0 '~ 

(7.10) 

(7.11) 

Under  conditions (3.5) and (7.1), projection of  the left-hand side of  Eq. (2.12) onto the vector i3 
g i v e s  

~|(t)(blsingl +b(cosgl +bo)=~(t ) (a2cos2q~l-a~sin291+a)cosgl  -a~sin91) (7.12) 

where 91 = not + 9~ °). 
We substitute (7.5) into the last equat ion of  (7.10) and make the change z = ctg u in the resulting 

equation. Then 

~(1 + z 2 ) - $2z + 2m~z~(1 + z 2 ) + m~ 2 (1 + z 2 )2 = 0 (7.13) 

Comparing (7.10) and (7.12), we have 

z(t) = P2((Pl)/Pl(tPl ) 
P2 (91) = a2 cos 29t - a~ sin 2t$1 + a) cos 9t - a{ sin 91 

P) (9 | )  = b| sin 9 |  + b(cos 91 + bo 

(7.14) 
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We substitute (7.14) into Eq. (7.13) and require  that  the resulting equat ion be an identity with respect  
to % . T h e  special case thus obta ined is character ized by the condit ionsAx2 = A13 = A~3 = 0, A n  = 
A22, a O) = 0 which, on  the basis of  the integrals (7.11), yield a regular  precession. Excluding this case, 
we see that  the substi tut ion gives a2 = 0, a~ = 0, ba = 0, b] = 0, a~ = 0, a]  = 0. But  this means  that  S~ 
is precessing regularly. We have thus proved that  type of  mot ion  5, for  which the first body is per forming 
a semi-regular precession of  the second type and the  second, S~ is spinning uniformly about  the vertical, 
is impossible. 

Note  that  a mot ion  in which S~ is spinning uniformly about  the vertical, while SE is per forming semi- 
regular  precession,  is also dynamically impossible. 

8. T H E  C A S E  O F  R E G U L A R  P R E C E S S I O N  

It has been  shown [1] that  Lagrange gyroscopes in a system of  n coupled bodies admit  of  regular  
precession.  However ,  the research in quest ion assumed a priori  that  all the  bodies  in the system are 
Lagrange  gyroscopes.  We shall not  make  this assumption here,  and we shall consider the regular  
precession of  two bodies Sx and $2 in the general  case. 

Le t  il, i2, i3 be a basis in $1 and ~1, ~2, ~3 a basis in $2. In addition, set 

i3 = [331~1 + [332~2 + [333:~3 ( 8 . 1 )  

tO I = noi 3 + mov, to 2 = n63 3 + m6v, i 3 • v = a~o '), a3" v = ao (2) (8.2) 

It follows f rom system (2.12), (2.13), on  the basis of  (8.1) and (8.2) and provided that  

for  the body S 1 

(1) cosq~li2 + a(oDi3 _ ,.0) sin %i~ + ao~ "P - -  "01  

v = ato 2) sin 92a, + ao~ ) costP2a 2 + a~o2)a3 

A12 = O, Aj 1 --" A22, Ai3a(o I) = 0, A23ao O) = 0 

no 2 (q  cos % - cf sin % ) + P, ..(2)_2 1"01 '"0 sin u sin(tp 2 - ~) = 0 

(8.3) 
* D ~ ( 1 ) ~ ( 1 ) ~ 2  monoa 0 + n 2 ( q  sin tpl + c~ cos tpl ) + m~ (g) sin % + gf cos tpt + go) + "2"o '~01 '"0 - 

D..,(2)~(1) 2 ~ , 2  --  Fla(0~) 2 + Pla(ol)m621333 0 - - * 1 ~ 0  ~01 " ~  - -  

a n d  for  the body $2 

8 n  = 0, B,~ = ~ 2 ,  B~3°~ 2) = o, B23a<o 2) = 0 

n62 (d I cos tp 2 - d(sin tp2 ) - pim20a(02) sin u sin(q~ 2 - ~) = 0 

m'2,,(l) , u ~(2) _B23ao(])coscP2]+ (8.4) 0 "0! [a(01)(Bll - B33 sint~2 : - -  ~,13t,01 

+m~n6b~) + n62 (d, sin q~2 + d( cos q~2) + a(o',)2(p2a(o')mo - F3 ) - Pl m~ (a(o I) - [333% (2)) = 0 

where  

- -  ]Z ~ ( I ) ~ ( 1 )  2 r A  
go -z2~'o "0, ~ , ,  +A22 -2A33), b~ = B33a~o ')2 + ~ ( B , I  + B22)a(o', )2, 

' - -  a ~(1)  _ ( l ) 3 A  - ( I ) 3 A  dl o ~(2) cl=A,3a~l~ ), q - ~ 2 3 " 0 1 ,  g l = - " o ~  "~3, g f = - " o l  "z3, =o13=01, 

d I' = u ~(|) • -.23w01, [i31 = sin u sin x), [332 = s i n u c o s ~ ,  [333 = c o s u  

(1) (2) (u and . are new variables). If we assume that a 0 = a o = 0, then it is obvious that sin u = 0, and therefore 
(a) (2) 

A13 = A23 = 0 and B13 = B23 - 0. When  a 0 = a 0 = 0, it follows f rom (8.3), (8.4) that  B13 = B23 = 0, 
i.e. sin u sin ( ~  - . )  = 0. But this means  that  alsoA13 = A23 = 0. A similar conclusion is reached  in 

(1) (2) I t case the case when a 0 -- ¢ 0, a 0 ¢ 0. Thus,  in any case, both  bodies are Lagrange gyroscopes, n tha 
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u reduces to a constant, and it is easy to derive the final conditions for regular precessions to exist from 
(8.3) and (8.4). This result complements that obtained by Kharlamov [1]. 
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